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A B S T R A C T   

Topological interface state formation in elastic structures has attracted extensive research interest. However, 
most previous studies only explored the topological properties of simple structures, such as plain beams and rods. 
This study explores the feasibility and methodology of producing topological interface states in hourglass lattice 
sandwich meta-structures. By extending the spectral element method (SEM), a theoretical framework is devel-
oped for analyzing such meta-structures. The results obtained by the analytical model agree well with the finite 
element (FE) simulation results. Based on the analytical model, we maintain the substrate plates and vary the 
radii of the struts that constitute the hourglass lattice to explore the topological change. The band inversion is 
identified in the first band gap by inspecting the band edge evolution pattern. The analysis also indicates that the 
second band gap does not support topological interface states. Subsequently, the vibration modes at band gap 
edges are examined to confirm the polarization transition. Based on these analyses, a topological sandwich meta- 
structure is designed. An ordinary meta-structure without using the topological design strategy is also con-
structed. Compared with the ordinary meta-structure, a solitary peak occurs on the transmittance curve of the 
topological meta-structure in the first band gap. The vibration mode at the solitary peak demonstrates that the 
transverse motion concentrates at the junction interface, exhibiting the typical energy localization behavior of 
topological interface states.   

1. Introduction 

Inspired by topological insulators in condensed matter physics, re-
searchers in other disciplines have extended the topological concepts to 
the classical physics domain [1–3]. Elastic metamaterials [4,5], in the 
form of carefully engineered periodic structures, demonstrate extraor-
dinary properties for wave manipulation [6]. In recent years, elastic 
metamaterials with topological phases have been widely explored to 
realize unprecedented topological properties [7,8]. Unorthodox dy-
namic phenomena have been observed and realized in topological 
metamaterials, including interface modes [9], polarization transition 
[10], energy localization [11], topological protection [12], etc. 

Fundamentally, the marvelous characteristics of metamaterials can 
stem from two distinct mechanisms, i.e., Bragg scattering (BS) [13] and 
local resonance (LR) [14]. The BS mechanism usually generates a wide 

band gap, but the lattice constant is required to be of the same scale as 
the wavelength [15]. In contrast, the LR mechanism is independent of 
the size of periodic structures, which enables the opening of 
low-frequency band gaps [16]. Unfortunately, the LR band gaps are 
relatively much narrower. The fundamental LR mechanism can be easily 
understood by referring to the lumped representation [17,18]. In prac-
tical systems, such as plates, beam-like resonators can be designed to 
produce the LR mechanism [19,20]. Besides, such meta-structures share 
a common feature that multiple lumped mass-spring resonators are 
embedded into the idealized homogenized lattices [21–23]. Thus, the 
complexity of most meta-structures is so high that the fabrication cost 
may become a hurdle [24]. Recently, Wen et al. [25] harmonized the 
material properties with geometrical periodicity to enhance the vibra-
tion reduction capacity in wide frequency ranges. For creating multiple 
band gaps, Tian et al. [26] merged BS and LR band gaps by introducing 
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spiral holes in elastic metamaterials. However, most metamaterial 
structures are designed with multiphase material, and the coupled band 
gaps are highly related to inclusions [27]. Due to fabrication barriers 
and stability risks, these complicated metamaterials have difficulties in 
practical implementation. 

Unlike acoustic and electromagnetic waves, manipulating elastic 
waves is more difficult because of diverse vibration modes. The dis-
covery of the topological interface state provides a novel waveguiding 
paradigm [3]. The emergence of topological interface states can be 
detected and predicted by mode transition or band inversion [10,28], 
and different topologies can be characterized by topological invariants 
such as the Zak phase [29]. Generally, there are two strategies to realize 
topological interface states. The first strategy is to break time-reversal 
symmetry [30]. According to this strategy, particular components such 
as gyroscopic units [31] and rotational flows [32] have to be introduced 
into the mechanical metamaterials. By mimicking the quantum hall ef-
fect, the elastic waves only propagate along a single direction. The 
second strategy relies on the removal of Dirac degeneracy [33]. For 
example, Muhammad et al. [34] altered the mode polarization behavior 
of a combinatorial beam to engender band transition. Zhao et al. [28] 
obtained two topological interface states by attaching mass-spring res-
onators to a monatomic chain. Recent studies [35,36] reported that 
adjusting the local resonators could also yield the Dirac cones. Never-
theless, in those topological metamaterials, the contributions of the local 
resonators lie in generating the band folding effect. The interface state 
formation and polarization transition still rely on the phononic 
crystal-featured host structures [37,38]. 

Regarding the modeling methods of metamaterials, the widely 
adopted analytical approaches include the transfer matrix method 
(TMM) [39], the finite element method (FEM) [40], the spectral element 
method (SEM) [25], and the plane wave expansion method (PWEM) 
[41]. Among these methods, it is intractable for the TMM to model 
complex structures, so its availability is restricted to one-dimensional 
systems [42]. The FEM has the advantage of modeling structures with 
arbitrarily complex geometries. However, extremely fine meshes are 
required to ensure accuracy at high frequencies [43] due to the utili-
zation of low-order shape functions. Similar to the FEM, the PWEM also 
demands a sufficient number of wave vectors at each band gap [8,44]. 
Unlike the FEM and PWEM, the SEM directly applies the discrete Fourier 
transforms to derive the exact frequency-domain solution. Therefore, a 
single spectral element suffices to characterize a uniform structural 
segment [45]. Since a significantly reduced amount of meshes is needed, 
the computational efficiency can be remarkably boosted [45–47]. Due to 
its unique merits, the SEM has been applied to evaluate the band gaps of 
hierarchical structures [48], laminate plates [49], Kagome lattices [50], 

etc. However, these investigations are limited to metamaterials modeled 
by the Levy-type plate theory with two opposite edges under the 
simply-supported condition. 

Although efforts have been devoted to developing and analyzing 
topological metamaterials, the following questions remain unanswered. 
(1) Is it possible to realize topological interface states in geometrically 
complicated composite structures rather than relatively simple and plain 
structures like beams and plates? (2) How to develop theoretical models 
of such topological metamaterials using the SEM with high computa-
tional efficiency? (3) Regarding the plates involved in the structures, 
how to extend the SEM to consider more general boundary conditions of 
universal metamaterial plates with clamped edges? 

Motivated by the above research gaps, this study proposes and an-
alyzes a sandwich topological metamaterial with hourglass lattices. The 
configuration design stems from two facts. On the one hand, sandwich 
structures are of light weight and high strength, which have been widely 
used in many areas, such as aerospace and mechanical engineering. 
Hence, investigating the topological orders in sandwich structures is of 
significant importance for bringing topological states into practical ap-
plications. On the other hand, such sandwich structures can be addi-
tively manufactured or assembled by plate and beam elements. By 
adopting the design method proposed in this paper, the topological 
interface states can be attained by simply varying the support trusses 
without modifying the substrate plates and the appearance of the 
sandwich beam. Moreover, the developed sandwich meta-structure is 
characterized by a continuous geometry and a single-phase material 
with no special fabrication requirement. Therefore, from the 
manufacturing perspective, such topological structures are easy to 
fabricate. 

Since the sandwich metamaterial to be studied in this paper has a 
complicated structure, it is referred to as the sandwich meta-structure to 
emphasize its geometric characteristics. Breaking the limitation of the 
SEM, an extended theoretical framework is put forward to analyze the 
sandwich meta-structure subjected to general boundary conditions. The 
study reveals that the topological interface state at low frequency can be 
stimulated from local resonances through band folding, and the fasci-
nating topological properties can be induced by simply altering the local 
lattice arrangement without resorting to the active device or the spin- 
orbit interaction. 

The rest of the paper is structured as follows. Section 2 presents the 
sandwich metamaterial with hourglass lattices. The corresponding 
theoretical model is developed to investigate the topological effect. In 
Section 3, the dynamic characteristics of the proposed metamaterial are 
evaluated. Section 4 elucidates the topological interface states via band 
structure and transmittance analyses. Finally, the conclusions of this 

Fig. 1. Schematic of the sandwich meta-structure with hourglass lattices. (a) Isometric view; (b) Top view. Each unit cell is composed of two hourglass lattices, 
whose corresponding support trusses are of different radii r1 and r2. The length, width, and height of each unit cell are 2lc, wc, and ht+2tp, respectively. Here, tp 
denotes the thickness of the substrate plate. The length, width, and height of each hourglass lattice are lt, wt, and ht, respectively. 
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work are summarized in Section 5. 

2. Structural design and theoretical modeling 

This section overviews the sandwich meta-structure to be studied in 
this paper and introduces the SEM modeling procedures. 

2.1. Structural overview of the sandwich meta-structure 

As depicted in Fig. 1, the sandwich meta-structure is designed with 
periodic unit cells. Each cell is composed of dual substrate plates and 
two hourglass lattices. The lattice core consists of eight oblique support 
trusses with radii of r1 or r2. Different from previous configurations, the 
radii of the neighboring trusses are alternately varied to enhance the 
impedance mismatch for producing a wider BS band gap. The structure 
is characterized by a continuous geometry and a single-phase material 
with no special fabrication requirement. 

From the topology perspective, the sandwich meta-structure is an 
assembly of the beam and plate elements. Therefore, the dynamic 
stiffness matrices of the core trusses and the top and bottom plates can 
be derived independently, then properly assembled together to reflect 
the dynamic property of the sandwich meta-structure. The combined 
formulation can not only provide insights into the dynamic behavior of 
this specific case but also offer a unified theoretical framework for 
analyzing other similar meta-structures with analogous lattices. 

In view of the above merits, this study will first extend the SEM to 
derive the exact dynamic stiffness of the lattice trusses and substrate 
plates in the following subsections. On this basis, procedures for the 
spectral element assembly and boundary condition implementation will 
be introduced to complete the modeling of the whole structure. Finally, 
the frequency-domain dynamic response will be predicted and 
compared with the finite element (FE) results for verification. 

2.2. Dynamic stiffness formulation for the hourglass lattice 

This subsection focuses on formulating the dynamic stiffness matrix 
(DSM) of the trusses. Instead of the standard spectral beam element that 
only simulates transverse deflection, the extended beam model is 
developed to account for the tensile, torsion, and bending deformations. 

A two-node spectral beam element with twelve degrees of freedom, 
as shown in Fig. 2, is constructed. According to Timoshenko’s beam 
theory, the governing equations of the beam transverse vibration are 
written as 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

κGA
[

∂2v(x, t)
∂x2 −

∂θz(x, t)
∂x

]

− ρA
∂2v(x, t)

∂t2 = 0

EIz
∂2θz(x, t)

∂x2 + κGA
[

∂v(x, t)
∂x

− θz(x, t)
]

− ρIz
∂2θz(x, t)

∂t2 = 0

, (1)  

where ρ and κ are the mass density and the shear correction factor [51], 
respectively; G and E are the Young’s modulus and shear modulus, 
respectively; A is the cross-sectional area of the beam; v is the transverse 

displacement along the y axis; θz and Iz denote the rotational angle and 
the area moment of inertia around the z-axis, respectively. 

The dynamic responses of v and θz can be represented in the spectral 
form [52] as below: 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

v(x, t) =
1
N

∑N

n=1
Vn(x,ωn)eiωnt

θz(x, t) =
1
N

∑N

n=1
Θz,n(x,ωn)eiωnt

(2)  

where Vn and Θz,n are the spectral amplitudes of v and θz, and ωn is the n- 
th angular frequency. By substituting Eqs. (2) into Eq. (1), the governing 
equations are transformed into the frequency domain: 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

κGA
(

∂2V
∂x2 −

∂Θz

∂x

)

+ ρAω2V = 0

EIz
∂2Θz

∂x2 + κGA
(

∂V
∂x

− Θz

)

+ ρIzω2Θ = 0

. (3) 

Mathematically, the general solutions of the above differential 
equations are given by 
{

V = α1e− ik1x + α2e− ik2x + α3e− ik3x + α4e− ik4x

Θz = β1e− ik1x + β2e− ik2x + β3e− ik3x + β4e− ik4x , (4)  

where the four roots of the characteristic equation can be obtained as 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

k1 = − k2 =
kF
̅̅̅
2

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

η1k2
F +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

η2
1k4

F + 4
(
1 − η2k4

G

)√√

k3 = − k4 =
kF
̅̅̅
2

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

η1k2
F −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

η2
1k4

F + 4
(
1 − η2k4

G

)√√ , (5)  

with the intermediate variables defined by 

kF =
̅̅̅̅
ω

√
(

ρA
EIz

)1
4

, kG =
̅̅̅̅
ω

√
(

ρA
κGA

)1
4

, η1 =
Iz

A
+

EIz

κGA
, η2 =

Iz

A
. (6) 

Besides, the corresponding coefficient βj (j = 1, 2, 3, 4) is expressed as 

βj = − i
(
kj − k4

G

/
kj
)
. (7)  

Following the procedure of the SEM, the boundary conditions are 
further imposed: 
{

V1 = V|x=0,V2 = V|x=L,Θz1 = Θz|x=0,Θz2 = Θz|x=L
Fy1 = Fy

⃒
⃒

x=0,Fy2 = Fy
⃒
⃒

x=L,Mz1 = Mz|x=0,Mz2 = Mz|x=L
, (8)  

where L denotes the beam length. The internal transverse shear force 
and bending moment are determined by 

Fy = κGA
(

∂V
∂x

− Θz

)

,Mz = EIz
∂Θz

∂x
. (9)  

Hence, the vectors of nodal displacements and forces for the bending in 

Fig. 2. Two-node spectral beam element with complete degrees of freedom. (a) Nodal displacements and rotations; (b) Boundary forces and moments for the bending 
in the x–y plane. The degrees of freedom at end nodes are described in the local coordinate system x-y-z, which can be transformed into the global coordinate system 
Xg-Yg-Zg. All boundary conditions are represented in spectral forms, and then they are substituted into the governing equations in the frequency domain. 
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the x-y plane satisfy the following relationship: 

Sv(ω)dv = Fv, dv = [V1,Θz1,V2,Θz2]
T
,Fv =

[
Fy1,Mz1,Fy2,Mz2

]T
. (10)  

where the DSM Sv can be further expanded as 

Sv(ω) = RH− 1
v , (11)  

and the matrices R and Hv are given by   

Considering the symmetry of the circular section, the DSM Sw for the 
bending in the x-z plane is identical to Sv. Thus, we can directly obtain 

Sw(ω)dw = Fw,dw =
[
W1,Θy1,W2,Θy2

]T
,Fw =

[
Fz1,My1,Fz2,My2

]T
. (13) 

As to the tensile of the beam, the motion is governed by 

ρ ∂2u(x, t)
∂t2 − E

∂2u(x, t)
∂x2 = 0 (14)  

where u is the axial displacement. Similarly, the corresponding nodal 
forces and displacements take the below form 

Su(ω)du = Fu,du = [U1,U2]
T
,Fu = [Fx1,Fx2]

T
. (15)  

In detail, the DSM Su is derived as 

Su(ω) =
kuEA

sin(kuL)

[
cos(kuL) − 1

− 1 cos(kuL)

]

, ku = ω
̅̅̅̅
ρ
E

√

. (16)  

For the torsional motion of the beam, the governing equation is written 
as 

ρ ∂2θx(x, t)
∂t2 − G

∂2θx(x, t)
∂x2 = 0 (17)  

where θx is the rotational angle around the x-axis. We can also map the 
nodal displacements to the corresponding forces in the frequency 
domain as below: 

Sθ(ω)dθ = Fθ,dθ = [Θx1,Θx2]
T
,Fθ = [Mx1,Mx2]

T
, (18)  

where the DSM Sθ is deduced as 

Sθ(ω) =
GIρ

L
kθL

sin(kθL)

[
cos(kθL) − 1

− 1 cos(kθL)

]

, kθ = ω
̅̅̅̅
ρ
G

√

, (19)  

where Iρ denotes the polar inertia moment of the cross-sectional area. 
By assembling Eqs. (11), (13), (15) and (18), the complete DSM Sb of 

the beam, including the consideration of the tensile, bending, and tor-
sion deformations, is expressed as 

Sb(ω)db = Fb. (20) 

In fact, Sb is the combination of Su, Sv, Sw, and Sθ. The nodal dis-
placements and forces are 
{

db =
[
U1,V1,W1,Θx1,Θy1,Θz1,U2,V2,W2,Θx2,Θy2,Θz2

]T
,

Fb =
[
Fx1,Fy1,Fz1,Mx1,My1,Mz1,Fx2,Fy2,Fz2,Mx2,My2,Mz2

]T
.

(21)  

2.3. Dynamic stiffness formulation for the substrate plate 

This section presents the formulation of the DSM of the substrate 
plate. Compared with Levy’s plate theory used in [53], it is more chal-
lenging to derive the DSM for the plate element with generalized 
boundary conditions. Moreover, since plates adopt line nodes, the 
transformation from line nodes to point nodes is required to make the 
DSM of the substrate plate compatible with the DSM of the hourglass 

Fig. 3. Rectangular thin plate element in the local coordinate. The length, width, and thickness of the plate are 2a, 2b, and h, respectively. The amplitudes of 
transverse displacement, transverse rotations, shear forces, and bending moments are W, Θx, Θy, Vx, Vy, Mx, and My, respectively. 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

− κGA( − ik1 − β1) − κGA( − ik2 − β2) − κGA( − ik3 − β3) − κGA( − ik4 − β4)

iEIzβ1k1 iEIzβ2k2 iEIzβ3k3 iEIzβ4k4

κGA( − ik1 − β1)e
− ik1L κGA( − ik2 − β2)e

− ik2L κGA( − ik3 − β3)e
− ik3L κGA( − ik4 − β4)e

− ik4L

− iEIzβ1k1e− ik1L − iEIzβ2k2e− ik2L − iEIzβ3k3e− ik3L − iEIzβ4k4e− ik4L

⎤

⎥
⎥
⎥
⎥
⎥
⎦

Hv =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1

β1 β2 β3 β4

e− ik1L e− ik2L e− ik3L e− ik4L

β1e− ik1L β2e− ik2L β3e− ik3L β4e− ik4L

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (12)   
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lattice. 
Since the thickness of the substrate plate is much smaller than its 

width and length, the Kirchhoff thin plate theory is employed to derive 
the dynamic stiffness formulation. As shown in Fig. 3, the governing 
equation in the frequency domain is expressed as 

D
(

∂4W
∂x4 + 2

∂4W
∂x2∂y2 +

∂4W
∂y4

)

− ρhω2W = 0, (22)  

where W stands for the amplitude of the transverse vibration; D = Eh3/ 
[12(1–μ2)] is the bending stiffness that is associated with the Poisson’s 
ratio μ and the thickness h of the plate; ω is the angular frequency; ρ is 
the mass density of the plate. Moreover, the amplitudes of the transverse 
rotations (Θx and Θy), shear forces (Vx and Vy), and bending moments 
(Mx and My) are expressed as 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Θx = −
∂W
∂x

,Mx = − D
(

∂2W
∂x2 + μ ∂2W

∂y2

)

,Vx = − D
(

∂3W
∂x3 + (2 − μ) ∂3W

∂x∂y2

)

Θy = −
∂W
∂y

,My = − D
(

∂2W
∂y2 + μ ∂2W

∂x2

)

,Vy = − D
(

∂3W
∂y3 + (2 − μ) ∂3W

∂y∂x2

) .

(23) 

According to [54], the combination of modified Fourier basis func-
tions provides an accurate and robust description of the plate motion for 
arbitrary boundary conditions. On this basis, the variable separation 
technique is applied to obtain the general solution of W, which is 
formulated as  

where Ckm1–Ckm4 and Cjn1–Cjn4 are unknown coefficients, and T denotes 
the trigonometric functions as below: 

Tk(αkmx) =
{

cos(mπx/a)k = 0
sin((m + 0.5)πx/a)k = 1 ,Tj

(
βjny

)

=

{
cos(nπy/b)k = 0
sin((n + 0.5)πy/b)k = 1 , (25)  

which indicates 

αkm =

{
mπx/ak = 0
(m + 0.5)πx/ak = 1 , βjn =

{
nπy/bk = 0
(n + 0.5)πy/bk = 1 . (26)  

The wave numbers pkm1, pkm2, qjn1, and qjn2 can be further determined as 

⎧
⎪⎨

⎪⎩

pkm1 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

α2
km −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ρhω2/D
√√

, pkm2 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

α2
km +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ρhω2/D
√√

qjn1 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

β2
jn −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ρhω2/D
√√

, pjn2 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

β2
jn +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ρhω2/D
√√ . (27)  

Given the symmetry and anti-symmetry of the basic functions [55], Eq. 
(25) can be further divided into four components: 

W(x, y) =
∑

k,j∈{0,1}

Wkj(x, y) = W00 + W01 + W10 + W11, (28)  

where the superscripts k and j correspond to the x and y directions, 
respectively; k and j take the values of ‘0’ and ‘1’; ‘0’ indicates the 
symmetric component, and ‘1’ denotes the antisymmetric component. 
To be more specific, the four components are expressed as: 

Wkj(x, y) =
∑

m∈M

[
Akm1Hj(pkm1y) + Akm2Hj(pkm2y)

]
Tk(αkmx)+

∑

n∈N

[
Bjn1Hk

(
qjn1x

)
+ Bjn2Hj

(
qjn2x

)]
Tj
(
βjny

) , (29)  

where Akm1, Akm2, Bjn1, and Bjn2 are undetermined constants, and H 
represents the hyperbolic functions: 

Hj(pikmy) =
{

cosh(pikmy)k = 0
sinh(pikmy)k = 1 ,Hk

(
qijnx

)
=

{
cosh

(
qijnx

)
j = 0

sinh
(
qijnx

)
j = 1 . (30)  

Through the decomposition, the following relation can be deduced from 
the symmetric and antisymmetric properties: 

Fig. 4. Boundary conditions of the plate element. (a): Definition of the boundary condition applied on the entire plate Ω, (b): Definition of the boundary condition 
applied on boundaries Ba and Bb. 

W(x, y) =
∑

k∈{0,1},m∈N

Tk(αkmx)[Ckm1cosh(pkm1y) + Ckm2cosh(pkm2y) + Ckm3sinh(pkm1y) + Ckm4sinh(pkm2y)]+

∑

j∈{0,1},n∈N

Tk
(
βjny

)[
Cjn1cosh

(
qjn1x

)
+ Cjn2cosh

(
qjn2x

)
+ Cjn3sinh

(
qjn1x

)
+ Cjn4sinh

(
qjn2x

)] (24)   
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⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

W(a, y)
Θx(a, y)
W(x, b)
Θy(x, b)

W( − a, y)
Θx( − a, y)
W(x, − b)
Θy(x, − b)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

W00
a + W01

a + W10
a + W11

a

Θ00
a + Θ01

a + Θ10
a + Θ11

a

W00
b + W01

b + W10
b + W11

b

Θ00
b + Θ01

b + Θ10
b + Θ11

b

W00
a + W01

a − W10
a − W11

a

− Θ00
a − Θ01

a + Θ10
a + Θ11

a

W00
b − W01

b + W10
b − W11

b

− Θ00
b + Θ01

b − Θ10
b + Θ11

b

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Vx(a, y)
Mx(a, y)
Vy(x, b)
My(x, b)

− Vx( − a, y)
− Mx( − a, y)
− Vy(x, − b)
− My(x, − b)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

V00
a + V01

a + V10
a + V11

a

M00
a + M01

a + M10
a + M11

a

V00
b + V01

b + V10
b + V11

b

M00
b + M01

b + M10
b + M11

b

V00
a + V01

a − V10
a − V11

a

− M00
a − M01

a + M10
a + M11

a

V00
b − V01

b + V10
b − V11

b

− M00
b + M01

b − M10
b + M11

b

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (31) 

As indicated above, the general solution of W in the entire region 
Ω=[–a, a] × [–b, b] can be represented by the four components Wkj(x, y) 
in the quarter region Ω1=[0, a] × [0, b] to reduce the computational 
complexity. 

After expanding the solution of the governing equation into the 
trigonometric series, we will impose the boundary conditions to deter-
mine the unknown coefficients that exist in the general solution. Like-
wise, the boundary displacements and forces are also decomposed into 
four components defined in Ω1=[0, a] × [0, b]. As depicted in Fig. 4, the 
boundary conditions are expressed as 

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Wkj
a

Wkj
b

Θkj
a

Θkj
b

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

Wkj
⃒
⃒

x=a
Wkj

⃒
⃒

y=b

Θkj
⃒
⃒

x=a
Θkj

⃒
⃒

y=b

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑

n∈N
Wkj

an
Tj
(
βjny

)

̅̅̅̅̅̅̅̅
ζjnb

√

∑

m∈M
Wkj

bm
Tk(αkmx)

̅̅̅̅̅̅̅̅̅
ζkma

√

∑

n∈N
Θkj

an
Tj
(
βjny

)

̅̅̅̅̅̅̅̅
ζjnb

√

∑

m∈M
Θkj

bm
Tk(αkmx)

̅̅̅̅̅̅̅̅̅
ζkma

√

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Vkj
a

Vkj
b

Mkj
a

Mkj
b

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

Vkj
⃒
⃒

x=a
Vkj

⃒
⃒

y=b

Mkj
⃒
⃒

x=a
Mkj

⃒
⃒

y=b

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑

n∈N
Vkj

an
Tj
(
βjny

)

̅̅̅̅̅̅̅̅
ζjnb

√

∑

m∈M
Vkj

bm
Tk(αkmx)

̅̅̅̅̅̅̅̅̅
ζkma

√

∑

n∈N
Mkj

an
Tj
(
βjny

)

̅̅̅̅̅̅̅̅
ζjnb

√

∑

m∈M
Mkj

bm
Tk(αkmx)

̅̅̅̅̅̅̅̅̅
ζkma

√

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (32)  

where ζst = 2 if and only if both s and t are 0; otherwise, ζst = 1. 
By substituting Eqs. (32) into Eq. (28), all unknown coefficients Akm1, 

Akm2, Bjn1 and Bjn2 in the general solution can be solved as 

Akm1 =
Vbm − Θbm

(
να2

km − p2
km1

)

(p2
km2 − p2

km1

)
H∗

k (pkm2b)
̅̅̅̅̅̅̅̅̅
ζkma

√ ,Akm2 = −
Vbm − Θbm

(
να2

km − p2
km2

)

(p2
km2 − p2

km1

)
H∗

k (pkm1b)
̅̅̅̅̅̅̅̅̅
ζkma

√

Bjn1 =
Van − Θan

(
νβ2

jn − q2
jn1

)

(
q2

jn2 − q2
jn1

)
H∗

j

(
qjn1a

) ̅̅̅̅̅̅̅̅
ζjnb

√ ,Bjn2 = −
Van − Θan

(
νβ2

jn − q2
jn2

)

(
q2

jn2 − q2
jn1

)
H∗

j

(
qjn2a

) ̅̅̅̅̅̅̅̅
ζjnb

√

,

(33)  

where the introduced differential is defined as 

H∗
k (pξ) =

dHk(pξ)
dξ

. (34) 

Subsequently, combining Eqs. (31) and (33), we can obtain four 
algebraic equations associated with all the Fourier coefficients, which 
are written into a concise form as [54] 
[

Wkj

Mkj

]

=

[
Ckj

WΘ Ckj
WV

Ckj
MΘ Ckj

MV

][
Θkj

Vkj

]

. (35)  

The vectors Wkj, Mkj, Θkj and Vkj are expressed as 
⎧
⎪⎨

⎪⎩

Wkj =
[(

Wkj
a

)T
,
(
Wkj

b

)T
]T
,Mkj =

[(
Mkj

a

)T
,
(
Mkj

b

)T
]T

Θkj =
[(

Θkj
a

)T
,
(
Θkj

b

)T
]T
,Vkj =

[(
Vkj

a

)T
,
(
Vkj

b

)T
]T . (36) 

The detailed coefficient matrices are given in Appendix A. Based on 
the above formulation, we can recast the relationship between the forces 
and displacement for line nodes as 

[
Vkj

Mkj

]

=

⎡

⎣

(
Ckj

WV
)− 1

−
(
Ckj

WV
)− 1Ckj

WΘ

Ckj
MV

(
Ckj

WV
)− 1

Ckj
MΘ − Ckj

MV
(
Ckj

WV
)− 1

Ckj
WΘ

⎤

⎦

[
Wkj

Θkj

]

. (37) 

The DSM for the plate element with line nodes has been obtained. 
The next step is constructing the force-displacement relationship with 
point nodes to enable the integration with the DSM of the hourglass 
lattices later on. To this end, (N + 1 – k) equally-spaced interpolation 
points are chosen in [0, a] along the x direction: 
{

if k = 0, x0 = 0, x1 = a/N, x2 = 2a/N,⋯, xN = a

if k = 1, x1 = a/N, x2 = 2a/N,⋯, xN = a
. (38) 

Table 1 
Geometric parameters of the sandwich meta-structure with hourglass 
lattices.  

Structure parameters Design value (mm) 

Plate length lc 100 
Plate width wc 50 
Plate thickness tp 4 
Height of cell hc 46 
Radius of the first lattice r1 1.5 
Radius of the second lattice r2 2.5  
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Likewise, the segment [0, b] in the y direction is also characterized by 
(N + 1 – j) point nodes. The corresponding components of the boundary 
displacement and force are expressed as   

The interpolation trigonometric polynomials with respect to the 
coordinates x and y, i.e., Tk (αkmx) and Tj (βjny), can be constructed from 
the data of given points. Thus, the boundary functions are equivalently 
expressed as 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Wkj
a (y) =

∑N+1− j

s=1
Wkj

as,pTj
(
βjsy

)
,Wkj

b (x) =
∑N+1− j

s=1
Wkj

bs,pTk(αksx)

Θkj
a (y) =

∑N+1− j

s=1
Θkj

as,pTj
(
βjsy

)
,Θkj

b (x) =
∑N+1− j

s=1
Θkj

bs,pTk(αksx)

Vkj
a (y) =

∑N+1− j

s=1
Vkj

as,pTj
(
βjsy

)
,Vkj

b (x) =
∑N+1− j

s=1
Vkj

bs,pTk(αksx)

Mkj
a (y) =

∑N+1− j

s=1
Mkj

as,pTj
(
βjsy

)
,Mkj

b (x) =
∑N+1− j

s=1
Mkj

bs,pTk(αksx)

. (40) 

By applying the discrete Fourier transform [56], the coefficients of 

Eq. (40) are determined from the given values at specific point nodes, 
which are formulated as   

According to Eqs. (40) and (41), the mapping from the Fourier co-
efficient vectors of point nodes to the displacement component can be 
constructed as 

⎧
⎪⎪⎨

⎪⎪⎩

dp =

[(
Wkj

p

)T
,
(

Θkj
p

)T
]T

=
[ {

Wkj
a (ys)

} {
Wkj

b (xt)
} {

Θkj
a (ys)

} {
Θkj

b (xt)
} ]T

f p =

[(
Vkj

p

)T
,
(

Mkj
p

)T
]T

=
[ {

Vkj
a (ys)

} {
Vkj

b (xt)
} {

Mkj
a (ys)

} {
Mkj

b (xt)
} ]T

s = j, j + 1,⋯,N
t = k, k + 1,⋯,N . (39)   

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Wkj
as,p =

∑N

t=j
Fjw

astW
kj
a (yn),Wkj

bs,p =
∑N

t=j
Fkw

bstW
kj
b (xm),Θkj

as,p =
∑N

t=j
Fjθ

astΘ
kj
a (yn),Θkj

bs,p =
∑N

t=j
Fkθ

bstΘ
kj
b (xm),

Vkj
as,p =

∑N

t=j
Fjv

astV
kj
a (yn),Vkj

bs,p =
∑N

t=j
Fkv

bstV
kj
b (xm),Mkj

as,p =
∑N

t=j
Fjm

astM
kj
a (yn),Mkj

bs,p =
∑N

t=j
Fkm

bstM
kj
b (xm).

(41)   

Table 2 
Material - structural steel parameters.  

Material parameters Nominal value 

Mass density ρ 7850 kg/m3 

Young’s modulus E 200 × 109 N/m2 

Poisson’s ratio μ 0.3 
Loss factor η 0.008  

Fig. 5. Comparison of the transmittances of an example hourglass lattice meta-structure calculated by SEM and FEM. Two primary vibration attenuation valleys 
appear on the transmittance response over the frequency ranges of 907–1194 Hz and 1735–2240 Hz, respectively. 
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[(
Wkj)T

,
(
Θkj)T

]T
= Fkj

dp

[(
Wkj

p

)T
,
(

Θkj
p

)T
]T

,
[(

Vkj)T
,
(
Mkj)T

]T

= Fkj
fp

[(
Vkj

p

)T
,
(

Mkj
p

)T
]T

. (42) 

Due to the symmetric and antisymmetric properties, the set of 
boundary displacements and forces evaluated at the nodal points satisfy 
the relationship: 

Hence, the following linear equations can be constructed with the 
mapping matricesRkj

dpandRkj
fp [57]: 

⎡

⎣
Wkj

p

Θkj
p

⎤

⎦ = Rkj
dp

[
Wp
Θp

]

,

⎡

⎣
Vkj

p

Mkj
p

⎤

⎦ = Rkj
fp

[
Vp
Mp

]

, (44)  

where the vectors are introduced as   

As a consequence, substituting Eqs. (40) and (43) into Eq. (44) yields 
[

Vp

Mp

]

= Dp

[
Wp

Θp

]

. (46)  

where the DSM Dp correlates the boundary forces and displacements 
evaluated at point nodes. Finally, similar to the FEM, the global DSM for 

the whole periodic plate structure can be constructed by assembling the 
individual DSM. 

2.4. Dynamic response of the meta-structure 

By using the DSM, the governing equation can be expressed as: 

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Wkj
a (yn)

Θkj
a (yn)

Wkj
b (xn)

Θkj
b (xn)

Mkj
a (yn)

Vkj
a (yn)

Mkj
b (xn)

Vkj
b (xn)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
1
4

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

W(a, yn) + ( − 1)jW(a, − yn) + ( − 1)kW( − a, yn) + ( − 1)k+jW( − a, − yn)

Θy(a, yn) + ( − 1)jΘy(a, − yn) − ( − 1)kΘy( − a, yn) − ( − 1)k+jΘy( − a, − yn)

W(xn, b) + ( − 1)kW( − xn, b) + ( − 1)jW(xn, − b) + ( − 1)k+jW( − xn, − b)
Θx(xn, b) + ( − 1)kΘx( − xn, b) − ( − 1)jΘx(xn, − b) − ( − 1)k+jΘx( − xn, − b)
Mx(a, yn) + ( − 1)jMx(a, − yn) + ( − 1)kMx( − a, yn) + ( − 1)k+jMx( − a, − yn)

Vx(a, yn) + ( − 1)jVx(a, − yn) − ( − 1)kVx( − a, yn) − ( − 1)k+jVx( − a, − yn)

My(xn, b) + ( − 1)kMy( − xn, b) + ( − 1)jMy(xn, − b) + ( − 1)k+jMy( − xn, − b)
Vy(xn, b) + ( − 1)kVy( − xn, b) − ( − 1)jVy(xn, − b) − ( − 1)k+jVy( − xn, − b)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (43)   

Wp = [W(a, y0),W( − a, y0),W(a, − y0),W( − a, − y0),⋯,W(xN , b),W(xN , − b),W( − xN , b),W( − xN , − b)]T

Θp =
[
Θx(x0, b),Θx(x0, − b),Θx( − x0, b),Θx( − x0, − b),⋯,Θy( − a, yN),Θy(a, − yN),Θy( − a, − yN)

]T . (45)   

Fig. 6. Band structure of asymmetric transverse (AT) mode and other modes for the sandwich meta-structure over the Brillouin zone. The right column plots 
correspond to the wave modes at specific points. 
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Fig. 7. Eigenmode shapes of the modes labeled in Fig. 6: (a) Mode A at the lower bound of the first band gap; (b) Mode B at the upper bound of the first band gap; (c) 
Mode C at the lower bound of the second band gap; (d) Mode D at the upper bound of the second band gap. 

Fig. 8. Band gap edge evolution with the change of the tuning parameter δ. The exchange in the first two wave mode branches induces band inversion and accidental 
degeneracy at δ = 0. In particular, the first band gap is non-trivial since it closes and re-opens, while the second one is trivial. 

Fig. 9. Eigen-modes of the unit cell for different δ. The left column corresponds to the results of the case with δ = − 0.5, and the right column corresponds to δ = 0.5. 
(a)-(h) correspond to the locations P2, P2’, P1, P1’, S2, S2’, S1 and S1’ labeled in Fig. 8, respectively. From top to bottom, their corresponding frequencies are 922.06 
Hz, 1179.9 Hz, 1786.1 Hz and 2152.0 Hz, respectively. 

D. Yu et al.                                                                                                                                                                                                                                       



International Journal of Mechanical Sciences 246 (2023) 108170

10

[
Se Sef

ST
ef Sf

][
de
df

]

=

[
re
rf

]

+

[
fe
ff

]

, (47)  

where d, r, and f are the vectors of displacement, reaction forces, and 
external forces, respectively. The subscripts e and f are short for 
“essential’’ and “free’’, respectively. Since the reaction force at the free 
nodes is equal to zero, we have rf = 0. Besides, there is no external load 
at the given nodes, i.e. fe = 0. Hence, Eq. (47) is rewritten as 
[

Se Sef

ST
ef Sf

][
de
df

]

=

[
re
ff

]

. (48) 

The unknown variables can be solved as 
⎧
⎪⎨

⎪⎩

df = S− 1
f

(
ff − ST

efde

)

re = Sede + SefS− 1
f

(
ff − ST

efde

) . (49)  

In view of ff = 0, we have 
⎧
⎨

⎩

df = − S− 1
f ST

efde

re =
(

Se − SefS− 1
f ST

ef

)
de

. (50) 

As a common practice, it is assumed that the left (clamped) end of the 
meta-structure is imposed with the harmonic excitation, and the vibra-
tion amplitude of the right (free) end is the output quantity of interest. 
Therefore, the transmittance is expressed as 

ψ(ω) = 20log(dout / din), (51)  

where the displacements of the input and output ends can be extracted 
from the solution of Eq. (49). By definition, the vibration is attenuated if 
ψ(ω) < 1. 

The band gap width is one of the core indicators to characterize the 
vibration attenuation ability. To quantitatively evaluate the band gap 
width of different meta-structures, a central-frequency normalized band 
gap width ΔG that avoids frequency dependence is defined as [58,59]: 

ΔG =
2(fu − fl)

fu + fl
, (52)  

where fu and fl are the lower and upper bound frequencies of the band 
gap. 

3. Finite element verification 

This section presents a corresponding FE model for verifying the 

Fig. 10. Schematic of the topological sandwich meta-structure. (a) Isometric view; (b) Top view. The structure is still composed of substrate plates and hourglass 
lattices, but the unit cells in the left and right sides of the interface are mirror symmetric. Besides, the hourglass lattices are of the same size as the preceding meta- 
structure, and the total unit cells are consistent with the original design. 

Fig. 11. Transmittances of the topological meta-structure calculated by SEM and FEM. The transmittance of the ordinary meta-structure (dash-dot line) is also 
provided for reference and comparison. Compared to the ordinary sandwich meta-structure, a solitary peak appears in the first band gap-induced vibration sup-
pression valley of the topological meta-structure. 
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developed theoretical model in Section 2. Both the band structure and 
the transmittance response of the sandwich meta-structure will be 
demonstrated. 

Without loss of generality, a sandwich meta-structure consisting of 
12 unit cells along the x-direction is considered in the verification case 
study. The structural parameters of the meta-structure are listed in 
Table 1. The substrate plates and hourglass lattices are made of steel 
with material parameters listed in Table 2. 

The transmittances of the proposed meta-structure are calculated by 
both SEM and FEM. The FE model is built using the commercial software 
COMSOL Multiphysics®. To take account of the damping effect, a 
complex elastic modulus Ec is adopted, i.e., Ec = E0(1 + iη), where η is the 
intrinsic loss factor of the material. Fig. 5 compares the results from the 
developed SEM model and the FE simulation. It can be clearly seen that 
the transmittance response computed by SEM agrees well with that ac-
quired from the conventional FEM: two band gaps exist over the fre-
quency ranges of 907–1194 Hz and 1735–2240 Hz. According to the 
definition, the normalized band gap widths are ΔG1 = 0.273 and ΔG2 =

0.254, respectively. Compared with the metamaterials proposed in [60, 

61], the present meta-structure produces two wider band gaps at the 
low-frequency ranges. 

Furthermore, the band structure is analyzed to understand potential 
wave types in the sandwich meta-structure. As depicted in the right- 
hand side subplots of Fig. 6, modes I and II stand for the longitudinal 
vibration modes in the substrate plates and hourglass lattices in the x 
and y directions, respectively. Modes III and V indicate the torsional 
wave propagation in the meta-structure. Modes IV and VI are the sym-
metric transverse modes. The branches corresponding to these modes 
are colored in gray since they will be triggered only under specific 
excitation conditions. Given the excitation condition applied in this 
study, only the asymmetric transverse modes in the blue-colored 
branches can be activated. We annotate them as AT mode in the 
figure for brevity. In terms of the AT mode wave propagation in the 
proposed meta-structure, two complete band gaps highlighted in the 
cyan area of Fig. 6 are opened. A narrower one appears in the lower 
frequency ranges, and a wider one forms in the higher frequency range. 
The two band gaps are, respectively, over the frequency range of 
907–1194 Hz and 1735–2240 Hz. The band gap ranges are consistent 

Fig. 12. Comparison of the vibration modes of the designed topological meta-structure at different frequencies: (a) 854 Hz, (b) 1022 Hz, (c) 1158 Hz, (d) 1982 Hz, 
and (e) 2106 Hz. (b) corresponds to the vibration mode of the topological interface state. In (b), the center of the meta-structure, where is the topological interface, 
exhibits the maximum vibration. 

Fig. 13. Spatial distribution of the dimensionless displacement amplitude along the length of the topological meta-structure. For the interface mode, the maximum 
vibration concentrates at the junction interface and decays away from there. 
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with the transmittance analysis results in Fig. 5. 
In accordance with previous works [21,62], the normalized fre-

quency fn = fc/vs is introduced to non-dimensionalize the result. Here, c 
and vs = [E/(2ρ(1+μ))]1/2 denote the lattice constant and shear wave 
velocity, respectively. Accordingly, the shear wave velocity in the uni-
form steel material is 3130.354 m/s. After normalization, the two band 
gap ranges are non-dimensionalized to be 0.058–0.076 and 
0.111–0.143, respectively. The results suggest that the lattice constant 
of the proposed meta-structure is much smaller than the wavelength, 
indicating a remarkable ability to suppress low-frequency vibration. 

Next, we will elaborate on whether the LR or BS mechanism induces 
the band gaps. As shown in Fig. 5, the attenuation property varies 
smoothly over the two band gap ranges, which is the typical behavior of 
a BS band gap [63]. In contrast, in a typical LR band gap region, a sharp 
maximum attenuation occurs at a certain frequency, and the trans-
mittance profile over this region is usually asymmetric. For a sandwich 
metamaterial beam with LR band gaps, one can refer to [64] to compare 
its transmittance profile and will notice an evident sharp spike on the 
transmittance curve in its band gap region. In addition, the eigenmode 
shapes corresponding to the lower and upper bound modes (labeled in 
Fig. 6) of the two band gaps are plotted in Fig. 7 to help identify the type 
of band gaps. It can be found that all four eigenmode shapes do not 
exhibit any local resonance phenomenon. The trusses in different cells 
are in the same thermal color as the substrate plate at the same location 
in the identical cell. In other words, all trusses carry out in-phase motion 
with the substrate plates. In the case of a typical LR band gap, its upper 
and lower bound modes should exhibit energy localization in the local 

resonators, and the local resonators should show out-of-phase vibration 
with the host structure [65,66]. The above analyses confirm that the 
band gaps in Figs. 5 and 6 belong to BS band gaps. 

4. Topological sandwich meta-structure 

In this section, a topological sandwich meta-structure is designed. 
The formation mechanism of the topological interface state is explained, 
and the related dynamic characteristics are discussed in detail based on 
the developed theoretical model. 

4.1. Band inversion 

The topological state formation is usually accompanied by the band 
inversion phenomenon. By maintaining the substrate plates untouched, 
we aim to adjust the design of the core lattice to induce band inversion in 
the proposed meta-structure. A tuning parameter δ is first introduced: 

δ =
2(r2 − r1)

r1 + r2
(53)  

Note that the radii of the rods are controlled to satisfy r1+r2 = 4 mm. By 
varying δ and tracking the band gap bounds, Fig. 8 shows the evolution 
of the band edges. It can be found that the first band gap closes and re- 
opens as δ increases from negative to positive. Along with the degen-
eration of two eigenmodes, the band inversion for the first band gap 
occurs at δ = 0, i.e., the up and down positions of the blue and red 
branches are swapped. However, the band inversion does not show up in 

Fig. 14. Diagram of the positions and sizes of the introduced defects to the topological sandwich meta-structure. The defects are all circle-shaped with a radius of 1 
cm. The defects are introduced to the top plates and situated at the middle of the corresponding subcell. 

Fig. 15. Transmittances of the topological sandwich meta-structures with and without defects. The topological interface state never disappears and always locates 
around 1022 Hz. 
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the second band gap, which indicates that the second band gap does not 
support the formation of any topological interface state. 

4.2. Polarization transition 

The band inversion indicates that the wave modes at the edges of the 
band gap will be exchanged. By setting δ to − 0.5 and 0.5, the wave 
modes at the edges of the two band gaps are presented and compared in 
Fig. 9. It is noted that the wave modes at the upper edge of the second 
band gap, i.e., P2 (Fig. 9(a)) and P2’ (Fig. 9(b)), are similar. Also, the 
wave modes at the lower edge of the second band gap, i.e., P1 (Fig. 9(c)) 
and P1’ (Fig. 9(d)), are analogous. This signifies that the wave modes at 
the edges of the second band gap remain almost the same after changing 
the sign of δ, which is as predicted by the edge evolution result shown in 
Fig. 8. Therefore, we can confirm that topological interface states will 
never occur in the second band gap. Unlike the second band gap, by 
comparing Fig. 9(e) and (h), we find that the vibration mode at the 
upper/lower edge of the first band gap is flipped to the lower/upper 
edge if the sign of δ is changed. The modal polarization transition is 
further confirmed if we examine and compare the vibration modes in 
Fig. 9(g) and (f). This modal polarization transition phenomenon 

provides a good sign for the appearance of the topological interface state 
in the first band gap. 

It is worth noting that calculating the topological invariants, such as 
the Zak phase for one-dimensional cases, can help identify the topo-
logical transition. However, the geometry of the sandwich structure 
studied in this paper is complicated. Therefore, calculating the Zak 
phase is not an easy task. Fortunately, researchers have proposed a 
discretized form to obtain approximated Zak phases [67,68]. Based on 
the theoretical model developed in this paper and by referring to the 
discretized form in [67,68], it could be possible to calculate the Zak 
phase numerically. Still, there are some challenges in implementing the 
numerical calculation. Therefore, this needs further effort and could be 
prospective work. 

4.3. Interface mode formation 

Based on the understanding of the polarization transition behavior, a 
topological sandwich meta-structure, as shown in Fig. 10, is constructed 
by assembling two finite chains in different topologies. Each of the left- 
and right-hand side chains consists of 6 cells. The tuning parameter δ of 
the unit cells in the left-hand side chain is set to − 0.5, and that for the 

Fig. 16. Spatial distribution of the dimensionless displacement amplitude along the topological meta-structures with and without defects. Even if defects exist, the 
maximum vibration always concentrates at the junction interface. 

Fig. 17. Transmittances of the topological sandwich meta-structures with different damping loss factors. The band gaps are of similar characteristics, and the to-
pological interface state is always triggered around 1022 Hz. 
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right-hand side chain is set to 0.5. For comparison, an ordinary meta- 
structure with a uniform topology along the assembled cells, i.e., the 
tuning parameter δ of all the unit cells are maintained the same, is also 
constructed. The band structure and transmittance results of the ordi-
nary meta-structure have already been presented in Figs. 5 and 6. 

By adopting the SEM approach elucidated in Section 2, we can also 
calculate the transmittance of the proposed topological meta-structure. 
Except for the tuning parameter δ, the other geometric and material 
parameters are the same as listed in Tables 1 and 2. The corresponding 
result is presented in Fig. 11. The FEM result is also provided for 
reference. As expected and already verified in the case study in Section 
3, the SEM result agrees well with the FEM result: the blue dash line 
tightly overlaps with the solid red curve. For the topological meta- 
structure, two wide band gaps are generated, respectively, in the fre-
quency ranges of 861–1149 Hz and 1742–2282 Hz. The central- 
frequency normalized band gap widths are ΔG1 = 0.286 and ΔG2 =

0.269, respectively. Compared with the ordinary meta-structure, the 
band gap widths are not influenced too much after introducing the to-
pological design concept. The most noticeable phenomenon in the to-
pological meta-structure is the occurrence of the solitary peak in the first 
band gap-induced vibration attenuation valley on the transmittance 
curve. This newly appeared solitary peak at 1022 Hz signifies the for-
mation of the topological interface state. 

On the transmittance curve, the topological interface state exhibits a 
peak just like other normal resonant peaks, except it is solitarily situated 
in the band gap-induced vibration attenuation valley. For this reason, 
the topological interface state is not easily distinguishable by barely 
examining the transmittance response. To further reveal and also 
confirm the feature of a topological interface state, one can plot out its 
vibration mode. The result is presented in Fig. 12. To make a high 
contrast comparison, the vibration modes at the nearby resonant peaks 
and several peaks in or at the edge of the second band gap-induced 
attenuation valley are also presented. For the normal peaks, their vi-
bration modes as shown in Fig. 12(a) and (c)-(e) are pretty arbitrary and 
share no common feature. For the vibration mode of the topological 
interface state, as shown in Fig. 12(b), it is observed that the transverse 
motion of the meta-structure concentrates at the middle position, which 
is the intentionally designed topological interface. As the topological 
interface state is formed at a frequency in the band gap, the transverse 
motions at other places of the meta-structure are much smaller and 
decay exponentially from the middle interface. Though the topological 
meta-structure proposed in the article is achieved based on a sandwich 
beam, the vibration mode of its topological interface state shares a 

similar feature as those reported in the existing literature [36,37,69]. 

4.4. Energy localization 

The vibration mode shown in Fig. 12(b) suggests that the topological 
interface state has an energy localization ability. As the kinetic energy in 
a vibration system is amplitude-dependent, we can quantify the energy 
distribution by the displacement amplitude field along the length of the 
sandwich meta-structure. Fig. 13 depicts the dimensionless displace-
ment amplitude distribution along the length of the topological meta- 
structure. Note that the displacement here refers to the relative 
displacement to the base; thus, the dimensionless displacement ampli-
tude at 0 equals 0, indicating that the base excitation is applied from the 
left end of the topological meta-structure. It is distinctly shown that the 
maximum amplitude occurs when the dimensionless length equals 0.5, i. 
e., at the center of the meta-structure. Though the excitation is input 
from the left end, and the right end is not constrained under the free 
condition, the maximum energy is predestined to concentrate at the 
interface between the two chains with different topologies. This pre-
determined behavior might be helpful and have valuable potential in 
structural health monitoring for the ease of characteristic information 
collection and energy harvesting for boosting energy conversion 
efficiency. 

4.5. Effect of geometry defects on the localization ability 

It is well-known that topological interface states are robust against 
defects and imperfections [10]. In the following, we intentionally 
introduce some defects and investigate their effects on the energy 
localization ability of the topological interface state. As shown in Fig. 14, 
the defects are introduced by drilling circular holes in the top plates of 
the sandwich meta-structure. The radius of the circular holes is 1 cm. 
The center of each circular hole locates at the middle of the corre-
sponding subcell. We explored five cases. The first four cases only have a 
single defect hole at the subcell numbered 10, 12, 14, and 16, respec-
tively. The last case has four defect holes at the positions mentioned 
above. 

The transmittances of the defected topological sandwich meta- 
structures are shown in Fig. 15. The transmittance of the intact (no 
defect) topological sandwich meta-structure is also plotted out for 
reference. It can be observed that the introduction of defects did not 
make the interface state disappear. The peak amplitudes are not 
significantly affected. In addition, regardless of the defect position, the 

Fig. 18. Effect of damping loss factor on the energy distribution. Different damping loss factors do not change the energy localization position of the topological 
interface mode. 
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topological interface state always forms around 1022 Hz. 
The displacement distributions along the meta-structures with de-

fects are examined to confirm that the topological sandwich meta- 
structure did not lose the energy localization ability even if 
manufacturing-caused defects and imperfections exist. As demonstrated 
in Fig. 16, the maximum vibration invariably concentrates at the junc-
tion interface. Compared with the intact topological sandwich meta- 
structure, the energy decay speed from the junction interface of the 
defected ones may decrease. We have further explored more cases by 
drilling defect holes elsewhere. The results are not presented but are 
very similar, and the energy localization abilities of the defected topo-
logical sandwich meta-structures are undoubtedly confirmed. This in-
dicates that the defects may slightly deteriorate the energy localization 
ability but will not make it disappear entirely. 

4.6. Effect of damping loss factor on the interface mode 

Since the sandwich meta-structure is made of aluminum, the range of 
the damping loss factor η is 0.0001–0.02 [12]. Through a comparative 
study of the frequency responses for different η, the effect of material 
loss factor on interface modes is revealed in Fig. 17. Although the 
transmission efficiency fluctuates with the change of damping, the band 
gap characteristics of the sandwich meta-structure are not affected by 
the material loss factor η. Moreover, the topological interface state never 
disappears and always locates around 1022 Hz. 

In addition, we have also evaluated the effect of damping loss factor 
on the interface mode via the energy localization phenomenon. As 
shown in Fig. 18, for the sandwich meta-structure, the energy attenua-
tion rate around the interface will reduce with the increase of damping. 
However, the maximum displacement amplitudes always emerge at the 
junction interface, indicating the robustness of the energy localization 
ability possessed by the topological interface mode. As demonstrated 
above, it can be concluded that the material damping could affect the 
energy distribution of the topological interface mode but could not 
easily take away the energy localization ability from the sandwich meta- 
structure. 

5. Conclusions 

This article has presented a study of constructing topological inter-
face states in hourglass lattice sandwich meta-structures. Unlike simple 
structures analyzed in previous studies, hourglass lattice sandwich meta- 
structures have much more complicated geometries, posing a great 
challenge for their theoretical modeling and topological design. We first 
developed an analytical approach for modeling such sandwich meta- 
structures based on the extension of the spectral element method 
(SEM). A corresponding finite element (FE) model has verified the 

analytical model. We designed a tuning parameter to trigger and induce 
the topological change in sandwich meta-structures. The tuning 
parameter was defined as the dimensionless radius difference between 
struts in two adjacent lattices. We then investigated the topological 
change of the sandwich meta-structure by varying the tuning parameter. 
The band inversion and polarization transition analyses indicated that 
the first band gap supports the generation of topological interface states 
while the second band does not. Based on the above results, we designed 
a topological sandwich meta-structure. The transmittance analysis 
revealed the occurrence of a solitary peak in the first band gap-induced 
vibration attenuation valley due to the introduction of the topological 
design strategy. The vibration mode at the solitary peak exhibited the 
typical behavior of a topological interface state, i.e., the transverse 
motion of the meta-structure concentrated at the junction interface and 
the kinetic energy localized there. 

In summary, this work has provided insights into the possibility of 
endowing hourglass lattice sandwich meta-structures with topological 
properties. It has also developed a general theoretical framework for 
formulating the analytical models for analogous meta-structures. Since 
this work focuses on establishing the theoretical formulation of such 
sandwich systems, the investigation of the back-scattering immune 
phenomenon that requires extending the current model to a 2D structure 
with acute-angled waveguides will be conducted in further work. 
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Appendix A. Explicit expression of four coefficient matrices in Eq. (35) 

For the sake of description, we define the following variables 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϖ1 = μβ2
jn − q2

jn1, ϖ2 = μβ2
jn − q2

jn2, ϖ3 = μα2
km − p2

km1,

ϖ4 = μα2
km − p2

km2, ϖ5 = μα2
km + β2

jn, ϖ6 = α2
km + μβ2

jn,

ϖ7 = 2( − 1)m+n
/[ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ζkmζjnab
√ (

p2
km1 + β2

jn

)(
p2

km2 + β2
jn

)]
,

ϖ8 = 2( − 1)m+n
/[ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ζkmζjnab
√ (

q2
jn1 + α2

km

)(
q2

jn2 + α2
km

)]
,

ϖ9 = (1 − μ)2α2
kmβ2

jn + ρhμω2/D, τ0 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4ρhω2/D
√

,

τ1 = Hk
(
qjn1a

)/
H∗

k

(
qjn1a

)
, τ2 = Hk

(
qjn2a

)/
H∗

k

(
qjn2a

)
,

τ3 = Hj(pkm1b)
/

H∗
k (pkm1b), τ4 = Hj(pkm2b)

/
H∗

k (pkm2b).

. (54)  
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On this basis, the element of these four matrices can be derived as 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ckj
WΘ(n, n) = − (ϖ1τ1 − ϖ2τ2)/τ0, Ckj

WΘ(n,m) = − ϖ5τ7,

Ckj
WΘ(m,m) = − (ϖ3τ3 − ϖ4τ4)/τ0, Ckj

WΘ(m, n) = − ϖ6τ8,

Ckj
WV(n, n) = (τ1 − τ2)/τ0, Ckj

WV(n,m) = ϖ7,

Ckj
WV(m,m) = (τ3 − τ4)/τ0, Ckj

WV(m, n) = ϖ8,

Ckj
MΘ(n, n) = −

(
ϖ2

1τ1 − ϖ2
2τ2

)/
τ0, Ckj

MΘ(n,m) = − ϖ7ϖ9,

Ckj
MΘ(m,m) = −

(
ϖ2

3τ3 − ϖ2
4τ4

)/
τ0, Ckj

MΘ(m, n) = − ϖ8ϖ9,

Ckj
MV(n, n) = (ϖ1τ1 − ϖ2τ2)/τ0, Ckj

MV(n,m) = ϖ6ϖ7,

Ckj
MV(m,m) = (ϖ3τ3 − ϖ4τ4)

/
τ0, Ckj

MV(m, n) = ϖ5ϖ8.

. (55)  
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